

U.S. Department of Transportation Federal Highway Administration

Federal Highway Administration, Office of Innovation Implementation -Resource Center

Emulsion Task Force - Friction Surface Treatments *June 29, 2023*

Andy Mergenmeier, P.E. Senior Pavement and Materials Engineer U.S. Department of Transportation Federal Highway Administration Resource Center

Disclaimers

- Except for any statutes or regulations cited, the contents of this presentation do not have the force and effect of law and are not meant to bind the public in any way. This presentation is intended only to provide information regarding existing requirements under the law or agency policies.
- The U.S. Government does not endorse products, manufacturers, or outside entities. Trademarks, names, or logos appear in this presentation only because they are considered essential to the objective of the document. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.
- All AASHTO and ASTM standards mentioned in this workshop content are non-governmental, voluntary standards and compliance with them is not required under Federal law.
- The approaches and methods discussed in the presentations are not Federal requirements unless otherwise stated. Some items may be required by State policy or specification.
- Unless otherwise noted, FHWA is the source of all images in this presentation.

2

Office of Innovation Implementation

Acronyms

- AASHTO: American Association of State Highway and Transportation Officials
- AADT: Annual Average Daily Traffic
- ADT: Average Daily Traffic
- ASTM: American Society for Testing and Materials
- CFME: Continuous Friction Measurement Equipment
- CFR: Code of Federal Regulations
- CMF: Crash Modification Factor
- DOT: Department of Transportation
- FHWA: Federal Highway Administration
- HFST: High Friction Surface Treatment
- HFT: Highway Friction Tester
- HSM: Highway Safety Manual

Office of Innovation Implementation

KYTC: Kentucky Transportation Cabinet

- LWST: Locked Wheel Skid Tester
- MPD: Mean Profile Depth
- MSC: Mean SCRIM Coefficient
- NCHRP: National Cooperative Highway Research Program
- RSA: Road Safety Audit
- SCRIM: Sideway-force Coefficient Routine Investigation Machine
- SPF: Safety Performance Function
- SR: Continuous Friction Measurement Test Result
- VaTech, VTTI: Virginia Tech Transportation Institute
- UK: United Kingdom

Agenda

- Friction and Safety
- Continuous Friction Measurement Data to Support Safety
 Analysis
- Continuous Friction Measurement Data

U.S. Department of Transportation Federal Highway Administration

Friction and Safety

AASHO Road Test – 1950's

Major Federal Road Research

Pavement and Safety

Office of Innovation Implementation

• Large Vehicle Damage Assessment – Taxes

U.S. Department of Transportation Federal Highway Administration

Highway Friction Testing – 1950s to 1960s

- 1st International Skid Prevention Conference held in the United States, 1958
 - Correlation study of locked wheel skid trailers in 1962
- American Society for Testing and Materials (ASTM) committee E-17 on Skid Resistance formed in 1960

Source: Center for Sustainable Transportation Infrastructure (CSTI)/ Virginia Tech Transportation Institute (VTTI).

U.S. Department of Transportation Federal Highway Administration

Pavement Policy

Federal Regulation, 23 CFR 626.3 – Policy

• "...Pavement shall be designed to accommodate current and predicted traffic needs in a **safe**, durable, and cost effective manner."

National Friction Guidance and Practices (continued) NCHRP Report 37, 1967:

- Vehicle speeds increased, younger drivers
- "...Because the intensity of the polishing process increases markedly with tread element slip, all other factors being equal, the lowest friction levels are found on high-speed roads, curves, and approaches to intersections; in short, in locations at which high friction values are needed most."

Kentucky HFST Program – Crash Reductions

- Crash reduction percent; % (138 locations: 107 curves, 30 ramps, 1 int.)
- Nationwide, very few HFST installations were from sites identified by network friction testing.

(As of 10/29/2018)

Annual	All	Ramps				
Wet Average	91%	90%				
Dry Average	53%	31%				
Source: Kentucky Transportation Cabinet (KYTC).						

2020 Initiated largest continuous friction measurement project in US. Annually collecting approximately 15,100 lane miles.

The Safe System Approach: 6 Core Principles

- Death/Serious Injury is Unacceptable
- Humans Make Mistakes
- Humans are Vulnerable
- Responsibility is Shared
- Safety is Proactive
- Redundancy is Crucial

U.S. Department of Transportation Federal Highway Administration

U.S. Department of Transportation Federal Highway Administration

A SAFE SYSTEM IS HOW WE GET THERE

FHWA definitions available at safety.fhwa.dot.gov/fas

NOTE: The total in the secondary pie chart does not exactly add up to 11% due to rounding.

U.S. Department of Transportation Federal Highway Administration

Office of Innovation Implementation

Safety Analysis

Safety Performance Functions (SPF), relate crashes to several factors

- X1, X2, ..., X n
 - Explanatory variables
 - P: Number of crashes on segment L
 - AADT: Traffic count
 - Xi: Friction, Texture, Curvature, cross-slope, grade, etc.

$$P = L \times e^{\beta_o + \ln(AADT)\beta_1 + X_{1+i}\beta_{1+j}}$$

Friction demand – level of friction (micro- and macrotexture) needed to safely perform braking, steering, and acceleration maneuvers.

U.S. Department of Transportation Federal Highway Administration

AASHTO Highway Safety Manual (2010)

Design Elements Covered in the HSM1 Predictive methods

Example Analysis: Rural Two-Lane Segment

Lane Width - base condition is 12'

- Segment has 12' lanes, the CMF is 1.00.
- Segment has 11' lanes, if ADT is <400 CMF is 1.01 (increase in crash risk by 1%)
- Segment has 11' lanes, if ADT is > 2000 CMF is 1.05

Continuous Friction Measurement Data to Support Safety Analysis

Standard of Practice

- Locked-Wheel Skid Trailer (LWST)
- Wet weather-related crashes (Skid Accident Reduction Program (SKARP))

Source: Center for Sustainable Transportation Infrastructure (CSTI)/ Virginia Tech Transportation Institute (VTTI).

Office of Innovation Implementation

Continuous vs. Sampled Based Pavement Testing

Standard friction testing in the United States is sample based

Do pavement conditions vary markedly as you travel down the road?

- Density (Intelligent Compaction, Infrared Technology, Ground Penetrating Radar (GPR))
- Structural Integrity (Traffic Speed Deflectometer (TSD), GPR)
- Segregation (Texture)
- Ride
- Cracking

What is Texture?

Office of Innovation Implementation

U.S. Department of Transportation Federal Highway Administration

Continuous Friction Measurement

- Rubber Tire test continuously measuring every foot of pavement (study – microtexture)
- Laser based texture measurement system measuring every foot of pavement (macrotexture)

Discrete Macrotexture Test – Sand Patch Test

Office of Innovation Implementation

Circular Track Meter (CTM)

- Changes in Pavement Macrotexture
- Have Been Used to Identify Segregation, Skid Resistance, Pavement Noise
- CTM Laser-Based Device to Measure Mean Profile Depth (MPD) of a Pavement
- Correlates Well with Sand Patch Test

Ames RLTS 9500

Source: https://amesengineering.com/products/laser-texture-scanner-model-9500/

Scan Area: 100 mm x 100 mm Vertical Resolution: 0.01 mm Transverse Res.: 0.415 mm Longitudinal Res.: 0.496 mm Scan Time: 90 sec

Office of Innovation Implementation
U.S. Department of Transportation
Federal Highway Administration

British Pendulum

Source: Center for Sustainable Transportation Infrastructure (CSTI)/ Virginia Tech Transportation Institute (VTTI).

Office of Innovation Implementation

Dynamic Friction Tester (DFT)

Source: Center for Sustainable Transportation Infrastructure (CSTI)/ Virginia Tech Transportation Institute (VTTI).

Office of Innovation Implementation

Source: Center for Sustainable Transportation Infrastructure (CSTI)/ Virginia Tech Transportation Institute (VTTI).

U.S. Department of Transportation Federal Highway Administration

Office of Innovation Implementation

Dynatest HFT

Source: Center for Sustainable Transportation Infrastructure (CSTI)/ Virginia Tech Transportation Institute (VTTI).

Office of Innovation Implementation

Data Collection System – SCRIM Water Tank: 2,200 Gallons = 8,400 Liters

Source: Center for Sustainable Transportation Infrastructure (CSTI)/ Virginia Tech Transportation Institute (VTTI).

Office of Innovation Implementation

Federal Highway Administration

Laser Texture Sensor

Source: WDM® United Kingdom

U.S. Department of Transportation Federal Highway Administration

Office of Innovation Implementation

Friction Demand - Investigatory Levels (UK)

Site category and definition		Investigatory level (50 or 80 km/h)									
Sile		0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65		
А	Motorway										
В	Dual carriageway non-event										
с	Single carriageway non-event										
Q	Approaches to and across minor and major junctions, approaches to roundabouts										
к	Approaches to pedestrian crossings and other high risk situations										
R	Roundabout										
G1	Gradient 5-10% longer than 50m										
G2	Gradient >10% longer than 50m										
S1	Bend radius < 500m - dual carriageway										
S2	Bend radius < 500m - single carriageway										
Sour	ce: United Kingdom CS 228 Skidding Resistance Revisio		auet 20	10							

Office of Innovation Implementation

Initial Texture Depth for UK Trunk Roads/ Motorways

Road Type	Surfacing Type	Average/ 1,000 m	Average/ 10 measures		
High Speed Roads > 50 MPH	Thin surface overlay Aggregate size<14mm	MPD 1.4 mm	MPD 1.0 mm		
	Surface treatments	MPD 1.6 mm	MPD 1.25 mm		
Lower Speed roads <40 MPH	Thin surface overlay Aggregate size<14mm	MPD 1.4 mm	MPD 0.9 mm		
	Surface treatments	MPD 1.25 mm	MPD 1.0 mm		
Roundabout, high speed >50 MPH	All surfaces	MPD 1.25 mm	MPD 1.0 mm		
Roundabout, low speed <40 MPH	All surfaces	MPD 1.0 mm	MPD 0.9 mm		

Source: United Kingdom Specification for Highway Works, Volume 1 Series 900, August 2008 Amendment, Table 9-3; British Standard EN 13036-1) using ASTM E1845 eq. MPD = (ETD -0.2)/0.8.

Texture Demand Categories New Zealand Transport Agency (NZTA)

Table 3 Minimum macrotexture requirements

Minimum macrotexture – mean profile depth (MPD mm)										
Permanent speed limit	Chi	pseal	Asphalt ES	ic concrete, C ≥ 0.4	Asphaltic concrete, ESC < 0.4					
	ILM	TLM	ILM	TLM	ILM	TLM				
50km/h and less	1.0	0.7	0.4	0.3	0.5	0.5				
Less than or equal to 70km/h but >50km/h	1.0	0.7	0.4	0.3	0.7	0.5				
Greater than 70km/h	1.0	0.7	0.9	0.7	0.9	0.7				

Source: NZ Transport Agency T10, 2010.

Office of Innovation Implementation

U.S. Department of Transportation Federal Highway Administration

MSC Crash Rates Differ by Road Classification

- The relationship between MSC and KYTC's wet crash rate is strongest on State Primary and State Secondary roads.
- The wet crash rate on State Secondary roads is 5x the wet crash rate on Parkways (60.4 vs 11.3).
- May reflect how geometric design standards and improved alignments on the Interstate and Parkway networks mitigate crash risk or the predominance of certain segment types on different Road Classifications.

Wet Crash Rate

(per

100Mvm/yr)

12.0

11.3

29.7

60.4

33

Year 1 Survey

Miles

1.756.1

964.1

3.693.3

7,375.2

Data Analysis Results - Statewide

0.1-mile analysis section segmented into 4 subsegments – lowest average friction subsegment used in the analysis.

<u>Site Category</u>	<u>Hierarchy</u>	CMF	% Decrease in Crash Rates for 10 unit increase in MSC
C1	State Secondary	0.9650	29.96 (23.58, 35.81)
C4	State Secondary	0.9657	29.44 (26.93, 31.85)
Non-Event	State Secondary	0.9695	26.64 (25.1, 28.15)
Intersection	State Secondary	0.9700	26.26 (24.88, 27.62)
C1	State Primary	0.9711	25.44 (18.61, 31.7)

In this District-level example, the 5 Site Category/Hierarchy combinations that offer the most potential impact (measured as the % decrease in 5-year crash rate if MSC is increased by 10 units).

Source: Kentucky Transportation Cabinet (KYTC).

Office of Innovation Implementation

U.S. Department of Transportation Federal Highway Administration

Continuous Friction Measurement Data

Importance of Continuous Measurement

State Route A

 Comparison Continuous Friction Measurement Equipment (CFME) and texture data collection vs. 1.0-mile Locked Wheel Skid Testing (LWST)

Continuous Friction Test Results

U.S. Department of Transportation Federal Highway Administration

Office of Innovation Implementation

Road Geometrics and Intersection at Low Fiction Location

Office of Innovation Implementation

NCHRP Report 37, 1967

tread element slip, all other factors being equal, the lowest friction levels are found on high-speed roads, curves, and approaches to intersections; in short, in locations at which high friction values are needed most." - National Cooperative Highway Research Program Report 37, 1967

> U.S. Department of Transportation Federal Highway Administration

Office of Innovation Implementation

16 Tests/Tries to Find Low Friction

U.S. Department of Transportation Federal Highway Administration

Office of Innovation Implementation

Chip Seal

Continuous Friction and Texture data collection on chip sealed roads in hot weather (bleeding?)

Office of Innovation Implementation

Chip Seal

C Video			~
and the second second	いの書類		C. C. S. S. S.
			and and
		/	/
1 per ser se se se			Deres

Lat degr	ees	— i	.ong degr	ees		io To (m)		-
, Dist m	L SFC	RSFC	LMPD	MMPD	RMPD	Grad	Xfall	Curve
9700	9	-99	0.41	NA	NA	1.3	-1.63	0.0001
	J		41					

t Loc Skid LhT	ex Align	GPS Ave	erages							Export	En	d
st metres Node	Event	Speed kph S	Status	Left Skid	Right Skid	Air *C	Surface *C	Left Tire *C	Right Tire *C		^	1
9700.0		79 \	V2dl:ok	9	-99	32	47	34	-99			
9710.0		79 \	V2dl:ok	10	-99	32	47	34	-99			
9720.0		79 \	V2dl:ok	12	-99	32	47	34	-99			
9730.0		79 \	V2dl:ok	12	-99	32	47	34	-99			
9740.0		79	V2dl:ok	12	-99	32	47	34	-99			
9750.0		79 \	V2dl:ok	9	-99	32	47	34	-99			
9760.0		79 \	V2dI:ok	9	-99	32	47	34	-99			
9770.0		80 \	V2dl:ok	10	-99	32	47	34	-99			
9780.0		80 \	V2dl:ok	10	-99	32	46	34	-99			
9790.0		80 \	V2dI:ok	7	-99	32	47	34	-99			
9800.0		80 \	V2dl:ok	9	-99	32	47	34	-99			
9810.0		81 \	V2dI:ok	9	-99	32	46	34	-99			
9820.0		81	V2dl:ok	10	-99	32	46	34	-99			
9830.0		81 \	V2dl:ok	17	-99	32	46	34	-99			
9840.0		81 \	V2dl:ok	31	-99	32	46	34	-99			
9850.0		81	V2dl:ok	33	-99	32	46	34	-99			
9860.0		81 \	V2dl:ok	32	-99	32	46	34	-99			
9870.0		81 \	V2dl:ok	31	-99	32	46	34	-99			
9880.0		81 \	V2dl:ok	32	-99	32	46	34	-99			
9890.0		81 \	V2dl:ok	33	-99	32	46	34	-99			
9900.0		81 \	V2dl:ok	33	-99	32	46	34	-99			
9910.0		81 \	V2dl:ok	31	-99	32	46	34	-99			
9920.0		81 \	V2dl:ok	32	-99	32	46	34	-99			
9930.0		80 \	V2dl:ok	32	-99	32	46	34	-99			
9940.0		80 \	V2dl:ok	32	-99	32	46	34	-99			
9950.0		80 \	V2dl:ok	32	-99	32	46	34	-99			
9960.0		80 \	V2dl:ok	29	-99	32	46	34	-99			
9970.0		80 \	V2dl:ok	30	-99	32	46	34	-99			
9980.0		80 \	V2dl:ok	31	-99	32	46	34	-99			
9990.0		80 \	V2dl:ok	32	-99	32	46	34	-99		¥	

Skid Data Spreadsheets

U.S. Department of Transportation Federal Highway Administration

Office of Innovation Implementation

Microsurfacing

HFST – Interstate Ramp

Assist in defining HFST installation on termini

6

Conclusion

- Various road sections have different friction demand.
- Friction demand level of friction (micro- and macrotexture) needed to safely perform braking, steering, and acceleration maneuvers.
- Different pavement surfaces provide different levels of friction through the life of the surface.

U.S. Department of Transportation Federal Highway Administration

Questions?

Andrew Mergenmeier P.E. Senior Pavement and Materials Engineer Andy.Mergenmeier@dot.gov

U.S. Department of Transportation Federal Highway Administration, Office of Innovation Implementation -Resource Center